Sale!

# Solution Manual (Downloadable Product) for University Calculus Early Transcendentals, 4th Edition, Joel R. Hass, Christopher E. Heil, Przemyslaw Bogacki, Maurice D. Weir, George B. Thomas, ISBN-10: 0134995546, ISBN-13: 9780134995540

\$100.00 \$50.00

Downloadable Instructor Solution Manual for University Calculus Early Transcendentals 4th Edition Hass

## Description

Solution Manual for University Calculus Early Transcendentals 4th Edition Hass

Downloadable Instructor Solution Manual for University Calculus Early Transcendentals, 4th Edition, Joel R. Hass, Christopher E. Heil, Przemyslaw Bogacki, Maurice D. Weir, George B. Thomas, ISBN-10: 0134995546, ISBN-13: 9780134995540

1. Functions

1.1 Functions and Their Graphs

1.2 Combining Functions; Shifting and Scaling Graphs

1.3 Trigonometric Functions

1.4 Graphing with Software

1.5 Exponential Functions

1.6 Inverse Functions and Logarithms

2. Limits and Continuity

2.1 Rates of Change and Tangent Lines to Curves

2.2 Limit of a Function and Limit Laws

2.3 The Precise Definition of a Limit

2.4 One-Sided Limits

2.5 Continuity

2.6 Limits Involving Infinity; Asymptotes of Graphs

Practice Exercises

3. Derivatives

3.1 Tangent Lines and the Derivative at a Point

3.2 The Derivative as a Function

3.3 Differentiation Rules

3.4 The Derivative as a Rate of Change

3.5 Derivatives of Trigonometric Functions

3.6 The Chain Rule

3.7 Implicit Differentiation

3.8 Derivatives of Inverse Functions and Logarithms

3.9 Inverse Trigonometric Functions

3.10 Related Rates

3.11 Linearization and Differentials

Practice Exercises

4. Applications of Derivatives

4.1 Extreme Values of Functions on Closed Intervals

4.2 The Mean Value Theorem

4.3 Monotonic Functions and the First Derivative Test

4.4 Concavity and Curve Sketching

4.5 Indeterminate Forms and L’Hôpital’s Rule

4.6 Applied Optimization

4.7 Newton’s Method

4.8 Antiderivatives

Practice Exercises

5. Integrals

5.1 Area and Estimating with Finite Sums

5.2 Sigma Notation and Limits of Finite Sums

5.3 The Definite Integral

5.4 The Fundamental Theorem of Calculus

5.5 Indefinite Integrals and the Substitution Method

5.6 Definite Integral Substitutions and the Area Between Curves

Practice Exercises

6. Applications of Definite Integrals

6.1 Volumes Using Cross-Sections

6.2 Volumes Using Cylindrical Shells

6.3 Arc Length

6.4 Areas of Surfaces of Revolution

6.5 Work

6.6 Moments and Centers of Mass

Practice Exercises

7. Integrals and Transcendental Functions

7.1 The Logarithm Defined as an Integral

7.2 Exponential Change and Separable Differential Equations

7.3 Hyperbolic Functions

Practice Exercises

8. Techniques of Integration

8.1 Integration by Parts

8.2 Trigonometric Integrals

8.3 Trigonometric Substitutions

8.4 Integration of Rational Functions by Partial Fractions

8.5 Integral Tables and Computer Algebra Systems

8.6 Numerical Integration

8.7 Improper Integrals

Practice Exercises

9. Infinite Sequences and Series

9.1 Sequences

9.2 Infinite Series

9.3 The Integral Test

9.4 Comparison Tests

9.5 Absolute Convergence; The Ratio and Root Tests

9.6 Alternating Series and Conditional Convergence

9.7 Power Series

9.8 Taylor and Maclaurin Series

9.9 Convergence of Taylor Series

9.10 Applications of Taylor Series

Practice Exercises

10. Parametric Equations and Polar Coordinates

10.1 Parametrizations of Plane Curves

10.2 Calculus with Parametric Curves

10.3 Polar Coordinates

10.4 Graphing Polar Coordinate Equations

10.5 Areas and Lengths in Polar Coordinates

Practice Exercises

11. Vectors and the Geometry of Space

11.1 Three-Dimensional Coordinate Systems

11.2 Vectors

11.3 The Dot Product

11.4 The Cross Product

11.5 Lines and Planes in Space

Practice Exercises

12. Vector-Valued Functions and Motion in Space

12.1 Curves in Space and Their Tangents

12.2 Integrals of Vector Functions; Projectile Motion

12.3 Arc Length in Space

12.4 Curvature and Normal Vectors of a Curve

12.5 Tangential and Normal Components of Acceleration

12.6 Velocity and Acceleration in Polar Coordinates

Practice Exercises

13. Partial Derivatives

13.1 Functions of Several Variables

13.2 Limits and Continuity in Higher Dimensions

13.3 Partial Derivatives

13.4 The Chain Rule

13.5 Directional Derivatives and Gradient Vectors

13.6 Tangent Planes and Differentials

13.7 Extreme Values and Saddle Points

13.8 Lagrange Multiplier

Practice Exercises

14. Multiple Integrals

14.1 Double and Iterated Integrals over Rectangles

14.2 Double Integrals over General Regions

14.3 Area by Double Integration

14.4 Double Integrals in Polar Form

14.5 Triple Integrals in Rectangular Coordinates

14.6 Applications

14.7 Triple Integrals in Cylindrical and Spherical Coordinates

14.8 Substitutions in Multiple Integrals

Practice Exercises

15. Integrals and Vector Fields

15.1 Line Integrals of Scalar Functions

15.2 Vector Fields and Line Integrals: Work, Circulation, and Flux

15.3 Path Independence, Conservative Fields, and Potential Functions

15.4 Green’s Theorem in the Plane

15.5 Surfaces and Area

15.6 Surface Integrals

15.7 Stokes’ Theorem

15.8 The Divergence Theorem and a Unified Theory

Practice Exercises

16. First-Order Differential Equations (online at bit.ly/2pzYlEq)

16.1 Solutions, Slope Fields, and Euler’s Method

16.2 First-Order Linear Equations

16.3 Applications

16.4 Graphical Solutions of Autonomous Equations

16.5 Systems of Equations and Phase Planes

17. Second-Order Differential Equations (online at bit.ly/2IHCJyE)

17.1 Second-Order Linear Equations

17.2 Non-homogeneous Linear Equations

17.3 Applications

17.4 Euler Equations

17.5 Power-Series Solutions

Appendix

A.1 Real Numbers and the Real Line

A.2 Mathematical Induction AP-6

A.3 Lines and Circles AP-10

A.4 Conic Sections AP-16

A.5 Proofs of Limit Theorems

A.6 Commonly Occurring Limits

A.7 Theory of the Real Numbers

A.8 Complex Numbers

A.9 The Distributive Law for Vector Cross Products

A.10 The Mixed Derivative Theorem and the increment Theorem